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Post-FisherianExperimentation:
from Physical to Virtual

ÅCƛǎƘŜǊΩǎ ƭŜƎŀŎȅ ƛƴ ŜȄǇŜǊƛƳŜƴǘŀƭ ŘŜǎƛƎƴΦ
ÅPost-Fisherianwork in Factorial experiments: 
üprinciples for factorial effects.
üconditional main effect analysis.

ÅComputer (virtual) experiments:   
ünumerical approach.
üstochastic approach via kriging.

ÅSummary remarks.



R. A. Fisher and his legacy

ÅIn Oct 1919, Fisher joined Rothamsted
Experimental Station. His assignment was to 
άexamine our data and elicit further information that  

we had missedΦέ όōȅ WƻƘƴ wǳǎǎŜƭƭΣ {ǘŀǘƛƻƴ 5ƛǊŜŎǘƻǊ ύ

ÅAnd the rest is history!

ÅBy 1926 (a mere 7 yearsJ), Fisher had 
invented ANalysisOf VArianceand            
Design Of Experimentsas new methods to 
design and analyze agricultural experiments.
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CƛǎƘŜǊΩǎ tǊƛƴŎƛǇƭŜǎ ƛƴ 5ŜǎƛƎƴ

ÅReplication: to assess and reduce variation.

ÅBlocking.

ÅRandomization.

ά.ƭƻŎƪ ǿƘŀǘ ȅƻǳ ŎŀƴΣ 

ŀƴŘ ǊŀƴŘƻƳƛȊŜ ǿƘŀǘ ȅƻǳ ŎŀƴƴƻǘΦέ

ÅOriginally motivated by agricultural expts, 
have been widely used for any physical expts.
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Factorial Experiments

ÅFactorial arrangement to accommodate factorial 
structure of treatment/block, by Fisher (1926) .            
hǊƛƎƛƴŀƭƭȅ ŎŀƭƭŜŘ άŎƻƳǇƭŜȄ ŜȄǇŜǊƛƳŜƴǘǎέΦ
ÅMajor work on factorial design by F. Yates (1935, 

1937), 
and fractional factorials by D. Finney (1945);          
both worked with Fisher.
ÅMajor development after WWII for applications to 

industrial experiments, by the Wisconsin School,     
G. Box and co-workers (J. S. Hunter, W. G. Hunter). 
ÅWhat principles should govern factorial experiments?
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Guiding Principles for Factorial Effects

ÅEffect Hierarchy Principle:

ïLower order effects more important than higher 
order effects;

ïEffects of same order equally important.

ÅEffect SparsityPrinciple: Number of relatively 
important effects is small.

ÅEffect Heredity Principle: for an interaction to be 
significant, at least one of its parent factors should be 
significant.

(Wu-IŀƳŀŘŀ ōƻƻƪ ά9ȄǇŜǊƛƳŜƴǘǎέΣ нлллΣ нллфύ
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Effect Hierarchy Principle

ÅFirst coined in Wu-Hamada book; was known in 
early work in data analysis.

ÅάCǊƻƳ ǇƘȅǎƛŎŀƭ ŎƻƴǎƛŘŜǊŀǘƛƻƴǎ ŀƴŘ ǇǊŀŎǘƛŎŀƭ ŜȄǇŜǊƛŜƴŎŜΣ 
(interactions) may be expected to be small in relation to 
error  - -ά (Yates, 1935); άhigher-order interactions - -
are usually of less interest than the main effects and 
interactions between two factors onlyΦέ (Yates, 1937).             
ÅThe more precise version is used in choosing 

optimal fractions of designs; it can be used to 
justify maximum resolution criterion (Box-Hunter, 
1961) and minimum aberration criterion (Fries-
Hunter, 1980). 
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Effect Heredity Principle

ÅCoined by Hamada-Wu (1992); originally used 
to rule out incompatiblemodels in model 
search. 

ÅAgain it was known in early work and used for 
ŀƴŀƭȅǎƛǎΥ     ά- - factors which produce small 
main effects usually show no significant 
interactionsΦέ    ǇΦмн ƻŦ ¸ŀǘŜǎ όмфотύΥ ά¢ƘŜ ŘŜǎƛƎƴ 
ŀƴŘ ŀƴŀƭȅǎƛǎ ƻŦ ŦŀŎǘƻǊƛŀƭ ŜȄǇŜǊƛƳŜƴǘǎέΣ 

Imperial Bureau of Soil Science, No. 35. 
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More on Heredity Principle

ÅStrong (both parents) and weak (single parent) 
versions defined by Chipman(1996) in 
bayesianframework. Strong heredity is the 
same as the marginality principle by 
McCullagh-Nelder(1989) but with different 
motivations. 

ÅOriginal motivation in HW:  application to 
analysis of experiments with complex aliasing. 
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Design Matrix OA(12, 27) and Cast Fatigue Data

Full Matrix: )2,12( 11OA



10

Partial and Complex Aliasing
ÅFor the 12-run Plackett-Burmandesign OA(12, 211)

partial aliasing:coefficient 

complex aliasing: partial aliases.

ÅTraditionally complex aliasing was considered to be 
ŀ ŘƛǎŀŘǾŀƴǘŀƎŜ όŎŀƭƭŜŘ άƘŀȊŀǊŘǎέ Lby C. Daniel).

ÅStandard texts pay little attention to this type of 
designs. 
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Analysis Strategy

ÅUse effect sparsityto realize that the size of 
true model(s) is much smaller than the 
nominal size.

ÅUse effect heredity to rule out many 
incompatiblemodels in model search.

ÅFrequentistversion by Hamada-Wu (1992); 
Bayesian version by Chipman(1996)

ÅEffective if the number of significant 
interactions is small.
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ωCast Fatigue Experiment:
Main effect analysis:  F                          (R2=0.45)

F, D                      (R2=0.59)
HW analysis:              F, FG       (R2=0.89)

F, FG, D          (R2=0.92)
ωBlood Glucose Experiment (3-level factors):

Main effect analysis: Eq, Fq (R2=0.36)
HW analysis:            Bl, (BH)lq, (BH)qq (R2=0.89)

ωBayesian analysis also identifies Bl, (BH)ll, (BH)lq, 
(BH)qq as having the highest posterior model probability.

Analysis Results 



A Fresh Look at Effect Aliasing
ÅThe two-ŦŀŎǘƻǊ ƛƴǘŜǊŀŎǘƛƻƴǎ όнŦƛΩǎύ !. ŀƴŘ /5 ŀǊŜ ǎŀƛŘ ǘƻ ōŜ 

aliased(Finney, 1945) because they represent the same
contrast (same column in matrix); mathematically similar to 
confoundingbetween treatment and block effects (Yates, 
1937).

ÅExample: a 24-1 design with I = ABCD, 

generated by Col D=(Col A)(Col B)(Col C).

13



De-aliasing of Aliased Effects

Å The pair of effects cannot be disentangled, and are 
t̀hus not estimable. They are said to be fully aliased.

ÅCan they be de-aliased without adding runs?? 

ÅHint: an interaction, say AB, should be viewed 
t̀ogether with its parent effects A and B.

ÅApproach: view AB as part of the 3d space of A, B, 
`AB; similarly for C, D, CD; because AB=CD, joint ` ` ` 
`space has 5 dimensions, not 6; then reparametrize
`each 3d space.
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Two-factor Interaction 
via Conditional Main Effects
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De-aliasing via CME Analysis

ÅReparametrizethe 3d space as A, B|A+, B|A-;   the 
three effects are orthogonal but not of same length; 
similarly, we have C, D|C+, D|C-; in the joint 5d 
space, some effects are not orthogonal          some 
conditional main effects (CME) can be estimated via 
variable selection, call this the CME Analysis.

ÅNon-orthogonalityis the saving graceJ.

ÅPotential applications to socialand medical
studies which tend to have fewer factors. 
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Matrix Representation

ÅFor the 24-1design with I = ABCD

17

A B C D B|A+ B|A- D|C+ D|C-

- - - - 0 - 0 -

- - + + 0 - + 0

- + - + 0 + 0 +

- + + - 0 + - 0

+ - - + - 0 0 +

+ - + - - 0 - 0

+ + - - + 0 0 -

+ + + + + 0 + 0



Car marriage station simulation experiment
(GM, Canada, 1988)
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Data
Factors

y
A B C D E F

- - - - - - 13
+ + - - - - 5
- - + - + - 69
- - - + - + 16
+ - + + - - 5
+ - + - - + 7
+ - - + + - 69
+ - - - + + 69
- + + + - - 9
- + + - - + 11
- + - + + - 69
- + - - + + 89
+ + + - + - 67
+ + - + - + 13
- - + + + + 66
+ + + + + + 56
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CME vsStandard Analysis
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Interpretation of C|F+

ÅLane selection C has a 
significant effect for 
larger cycle time F+,           
a more subtle effect 
than the obvious effect 
of E (i.e., % repair 
affects throughput).
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Computer 

Experiments

/Simulations

Aerospace:

Aircraft design, 

dynamicsé

Mechanical: 

machining, 

materialé

Chemical &Biology:

nanoparticle and

Polymer synthesisé

From Physical to 
Virtual (Computer) Experiments
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Example of Computer Simulation:
Designing Cellular Heat Exchangers
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Important Factors

Å Cell Topologies, Dimensions, and Wall Thicknesses

Å Temperatures of Air Flow and Heat Source

Å Conductivity of Solid

Å Total Mass Flowrate of Air

Response

Å Maximum Total Heat Transfer
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Heat Transfer Analysis

ASSUMPTIONS

ïForced Convection

ïLaminar Flow:  Re < 2300

ïFully Developed Flow

ïThree Adiabatic (Insulated) Sides

ïConstant Temperature Heat 

Source on Top

ïFluid enters with Uniform Temp

ïFlowrate divided among cells

*B. Dempsey, D.L. McDowell

ME, Georgia Tech

GOVERNING EQUATIONS

( )c s c c c
T

Q k A A q in walls
x

D
= =

D

( )h h h hQ hA T A q convection from walls to fluid= D =

( )f pQ mc T fluid heating= D
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Heat Transfer Analysis
A Detailed Simulation Approach--FLUENT

Å FLUENT solves fluid flow and 
heat transfer problems with a 
computational fluid dynamics 
(CFD) solver.  

Å Problem domain is divided into 
thousands or millions of 
elements.  

Å Each simulation requires hours 
to days of computer time on a 
Pentium 4 PC.  

FLUENT
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Why Computer Experiments?
ÅPhysical experiments can be time-consuming, costly or 

infeasible (e.g., car design, traffic flow, forest fire).

ÅBecause of advances in numerical modeling and 
computing speed, computer modeling is commonly 
used in many investigations.

ÅA challengeΥ CƛǎƘŜǊΩǎ ǇǊƛƴŎƛǇƭŜǎ not applicable to 
deterministic (or even stochastic) simulations. Call for 
new principles!

ÅTwo major approaches to modeling computer expts: 

ïstochasticmodeling, primarily the krigingapproach, 

ïnumericalmodeling.   
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Gaussian Process (Kriging) 
Modeling
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KrigingPredictor
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Statistical Surrogate Modeling of 
Computer Experiments

prediction,  optimization

surrogate model
(Kriging)

computer modeling
(finite-element simulation)

physical experiment 
or observations

more FEA runs 
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More on Kriging
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Interplay Between Design and Modeling

ÅComputer simulations with different levels of 
accuracy (Kennedy-hΩIŀƎŀƴΣ нлллΤ Qianet al., 
2006; Qian-Wu, 2008) 

construction of nestedspace-filling (e.g., Latin 
hypercube) designs (Qian-Ai-Wu, 2009, various 
papers by Qianand others, 2009-date).

ÅGP model with quantitative and qualitative
factors (Qian-Wu-Wu, 2008, Han et al., 2009)         

construction of slicedspace-filling (e.g., Latin 
hypercube) designs (Qian-Wu, 2009, Qian, 2010).
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Numerical Approach

ÅCan provide fasterand more stable computation, and fit 
non-stationary surface with proper choice of basis 
functions. 

ÅSome have inferential capability: Radial Basis 
interpolating  Functions (closely related to kriging), 
smoothing splines(Bayesian interpretation).

ÅOthers do not: MARS, Neural networks, regression-based 
inverse distance weighting interpolator (varest, but no 
distribution), sparse representation from overcomplete
dictionary of functions. Need to impose a stochastic structure 
to do Uncertainty Quantification. One approach discussed 
next. 
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UncertaintyQuantification

Prediction 

Surrogate model
(Kriging)

computer modeling
(finite-element simulation)

Physical experiment 
or observations

UQ

UQ
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Response Surface 
for BistableLaser Diodes
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Scientific Objectives 
in Laser Diode Problem

ÅEach PLE corresponds to a chaoticlight output, 
which can accommodate a secure optical 
communication channel; finding morePLEs would 
allow more securecommunication channels.

ÅObjectives: Search all possible PLE (red area) and 
obtain predicted values for PLEs. 

ÅA numerical approach called OBSM(next slide) can 
do this. Question: how to attach error limits to the 
predicted values? 
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OvercompleteBasisSurrogateModel

ÅUse an overcompletedictionary of basis 
functions, no unknownparameters in basis 
functions.
ÅUse linear combinations of basis functions to 

approximate unknown functions; linear 
coefficientsare the only unknown parameters.
ÅUse Matching Pursuit to identify nonzero 

coefficients; for fast and greedy computations.
Å/ƘƻƛŎŜ ƻŦ ōŀǎƛǎ ŦǳƴŎǘƛƻƴǎ ǘƻ άƳƛƳƛŎέ ǘƘŜ ǎƘŀǇŜ ƻŦ 

the surface. Can handle nonstationarity. 
Chen, Wang, and Wu (2010)
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Imposing a Stochastic Structure
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Simulation Results I

Comparison between MP and SSVS


