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AostFisherianwork in Factorial experiments:
U principles for factorial effects.
U conditional main effect analysis.
AComputer (virtual) experiments:
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U stochastic approach viaiging
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R. A. Fisher and his legacy

AIn Oct 1919, Fisher joindRiothamsted
Experimental Station. His assi -«
cexamine our data and elicit furthe Sk

we had misse®é 068 W2

A And the rest is history! ‘

iInvented ANalysisOf VArianceand
DesignOf Experimentsasnew methods to
design and analyze agricultural experiments.

Georgia



CAAaKSNXRa t NAYyO

A Replication to assess and reduce variation.
A Blocking
A Randomization
a. ft201 6KIFO @&2dz
FYR NIYYR2YAT S gKI
A Originally motivated by agriculturakpts
have been widely used for any physieapts
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Factorial Experiments

A Factorial arrangement to accommodate factorial
structure of treatment/block, by Fisher (1926) .
hNANIAYI|F e OFff SR aO2 YL

A Major work onfactorial desigrby F. Yates (1935,
1937), ,

andfractional factorialdy D. Finney (194
both worked with Fisher.

A Major develnnment after
industrial ex \“ b

G. Box and &‘\
A What princif 5 <
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Guiding Principles for Factorial Effects

A Effect Hierarchy Principle

I Lower order effects more important than higher
order effects;

I Effects of same order equaliyportant.

A EffectSparsityPrinciple Number of relatively
Important effects is small.

A Effect Heredity Principlefor an interaction to be
significant, at least one of its parent factors should be
significant.

(Wl ' YFRF 0221 G9ELISNAY
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Effect Hierarchy Principle

A First coined in WiHamada book; was known in
early work in data analysis.

AGCNRY LIKeaAOltf O2yaARSNI .
(Interactions) may be expected to be small in relation to

error - - d(Yates, 1935)higherorder interactions: -
are usually of less interest than the main effects and

interactions between two factors ory€Yates, 1937).

A The more precise version is used in choosing

optimalfractions of designs; it can be used to
justify maximum resolutiorcriterion (BoxHunter,
1961) andninimum aberratiorcriterion (Fries
Hunter, 1980).
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Effect Heredity Principle

A Coined by Hamad®/u (1992)priginally used
to rule outincompatiblemodels in model
search.

A Again it was known in early work and used for
I VI f e a-fad&dYs which prodace small
main effects usually show no significant
interactionsbe omu 23 | 0S& oM
FYR FylLfeara 27 TiOUZ NI

Imperial Bureau of Soil Scienbks,. 35.

d
|
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More on Heredity Principle

A Strong (both parents) and weak (single parent
versions defined bZhipman(1996) in
bayesianframework.Strong hereditys the
same as thenarginality principldoy

McCullaghNelder(1989) but with different
motivations.

A Original motivation in HW: application to
analysis of experiments with complex aliasing.



Design Matrix OA(12, 27) and Cast Fatigue Da
Full Matrix; OA(122'Y

Factor Logged
F Lifetime

6.058
4.733
4.625
5.899
7.000
5.752
5.682
6.607
5.818
5.917
5.863
4.809
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Partial and Complex Aliasing
A For the 12run PlackettBurmandesign OA(12,12)

= 1...,
Eﬁi:bﬁ—a D
Lk,

partial aliasing:coefficient - =

complex aliasing:4s(= %3 partial aliases.

A Tradltlonally complex allasmg was considered to be
I RA&F RO YOl 39 by @QDbdniels R

A Standard texts pay little attention to this type of
designs.
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Analysis Strategy

A Useeffect sparsityto realize that the size of
true model(s) is much smaller than the
nominal size.

A Useeffect heredityto rule out many
iIncompatiblemodels in model search.

A Frequentistversion by HamadsiVu (1992);
Bayesian version 0@hipman(1996)

A Effective if the number of significant
Interactions Is small.

Georgia



Analysis Results

wCast Fatigue Experiment:

Main effect analysis: F 2=0(85)

ED 24259

HW analysis: E FG (R=0.89)

E FG, D (R=0.92)
uBloodGlucoseExperiment (devel factors):

Main effect analysisk,, F, (R=0.36)

HWanalysis: B, (BH), (BH), (R=0.89

uBayesiaranalysis also identifie, (BH), (BH),
(BH),, as having the highest posterior mogebbability.
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A Fresh Look at Effect Aliasing

A ThetwoFT | OU2NJ AVISNI OGA2ya OHT)
aliased(Finney, 1945) because they represent Hagne
contrast (same column in matrix); mathematically similar to

confoundingoetween treatment and block effects (Yates,
1937).

A Examplea 241designwith | =ABCD,
generated by Col D=(Col A)(Col B)(Col C).

A B C D AB = CD

T S
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De-aliasing of Aliased Effects

A Thepair of effects cannot be disentangled, and are
thusnot estimable They are said to bellly aliased.

A Canthey be dealiasedwithout addingruns??

A Hint an interaction, say AB, should be viewed
together with its parent effects A and B.

A Approach view AB as part of the 3d space of A, B,
AB similarly for C, D, Cbecause AB=CD, joint
spacehas 5 dimensions, not 6; theeparametrize
each3d space.

Georgia
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Two-factor Interaction
via Conditional Main Effects

* Define the conditional main effect of A given B at
level +: ME(AIB+) = J(A+|B+) = (A= B +)
similarly, ME(AIB =) = j(A+|B =) —y(A—|B -),

* Then AB = [ME(A|B +) — ME(A|B -)]/2

* View the conditional main effects mew|B +),
ME(A|B -)

as interaction components.

Georgia
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De-aliasing via CME Analysis

A Reparametrizéhe 3d space as A, B|A+, BjA the
three effects are orthogonal but not of same length;
similarly, we have C, D|C+, D|@h the joint 5d
space, some effects are not orthogonad) some
conditional main effects (CME) can be estimated via
variable selection, call this tteME Analysis.

A Non-orthogonalityis the saving gracé .

A Potential applications teocialand medical
studies which tend to have fewer factors.

Georgia



Matrix Representation

A For the 2-'design with | = ABCD

A B C D B|A+ BJA- D|C+ D|C

0 - 0 -

+ + 0 - + 0

+ - + 0 + 0 +

- + + - 0 + 0
+ + 0 0 +
+ + - 0 0
+ + + 0) -
+ + + + + 0 0
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Car marriage station simulation experiment
(GM, Canada, 1988)

+ A 2% 7 expt with I=ABCE=ABDF=CDEF,
note: all 2fi’s are fully aliased, i.e., not estimable
» Six factors:

A: no of lanes in brake cell (3,4)

B: % of cars with ABS (0, 100)

C: lane selection logic (FIFO, free flow)

D: no of Automatic Guided Vehicles (24,34)
E: % repair in marriage (8, 16)

F: marriage base cycle time (124, 124+29)

* v:throughput of a simulation run (40 hrs)

Georgia 18
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Data

Factors
A B C D
+ + - -
- - + -
. - - +
+ - + +
+ - + -
+ - - +
+ B - -
- + + +
- + + -
- + - +
- + - -
+ + + -
+ + - +
- - + +
+ + + +
Georgia
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CMEvs StandardAnalysis

Model 1(Standard): E(***), C(0.018%),
A(0.022*), CF(0.056); R“=98.29%, C,=5.0

Model 2(CME): E(***), C|F+(0.0037*%),
A(0.017*); R*=98.26%, C,,=4.0

Model 3(CME): E(***), C|F+(0.003*%*),
A(0.014*), D(0.15); R*=98.57%, (,,=5.0

Model 2 > Model 3 > Model 1

Georgia

20



Interpretation of C|F+

A LaneselectionC hasa
significant effect for
larger cycldime F+,
amore subtle effect :
than the obvious effect
of E (I.e., % repair
affects throughpul.

36 38 40 42 44 46
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From Physical to

Virtual (Computer) Experiments

Chemical &Biology:
nanoparticle and
Pol ymer sy

Mechanical:
machining,

Coputer
Experiments
/Simulations

Aerospace:
Aircraft design,
dynami cSs

22



Example of Computer Simulation:
Designing Cellular Heat Exchangers

Heat
Source
T

source

Air Flow, T,

Important Factors

A Cell Topologies, Dimensions, and Wall Thicknesses
A Temperatures of Air Flow and Heat Source
A Conductivity of Solid
A Total Mass Flowrate of Air
Response
A Maximum Total Heat Transfer
Georgiall;

FTechin:
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Heat Transfer Analysis

e / ASSUMPTIONS

-
m!iuimg/:’/'lﬁ const / T Forced Convection

T Laminar Flow: Re < 2300

Y —

adiabatic 7 N
e I Fully Developed Flow
e

.-"',J} H -
., adiabatic

I Three Adiabatic (Insulated) Sides

I Constant Temperature Heat

Source on Top
GOVERNING EQUATIONS

DT

I Fluid enters with Uniform Temp
Q. = kA, o Ag. (inwalls)

I Flowrate divided among cells
Qn=hA, D ALqy, (convection from walls to fluil

. : : *B. Dempsey, D.L. McDowell
Qf - me o) (fIUId heat'ng ME, Georgia Tech
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Heat Transfer Analysis
A Detailed Simulation ApproacRLUENT

A FLUENT solves fluid flow and
heat transfer problems with a
computational fluid dynamics
(CFD) solver.

A Problem domain is divided into
thousands or millions of
elements.

A Each simulation requires hours
to days of computer time on a
Pentium 4 PC.

FLUENT

Georgia
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Why Computer Experiments?

A Physical experiments can be tirmsensuming, costly or
Infeasible (e.g.¢ar design, traffic flowfprestfire).

A Because of advances in numerical modeling and
computing speed, computenodelingis commonly
usedin manyinvestigations.

A AchallengyY CA & K S NXb&appliiey O A LI
deterministic (or even stochastic) simulations. Call for
new principles!

A Two major approaches to modeling compuépts
I stochastiamodeling, primarily thérigingapproach,
I numericalmodeling.

Georgia
Tech



Gaussian ProcesKriging
Modeling

* (Gaussian process:
y(0)~GP(u(x), 52 p(.).
— u(x): mean, linear model u(x) = f(x)'p,

— ¢ (.): positive correlation function, ¢(x; — x,,0),
e.g., Gaussian correlation function,

$(x1 — x2,0) = exp (— Y 0i(xe; — xz,i)z), 0 € R}

— o%: variance.

Georgia 27



KrigingPredictor

* Best Linear Unbiased Predictor (BLUP):
y(x) = f)'B+r(x)R™(y - FB),

— B = (F'R™'F)"'F'R~ 'y is the generalized least
squares estimation, F = n X k model matrix.

— R is the correlation matrix, R; ; = [qb(xi — X;j, 9)].

—1r(x) = (¢(x — x1,0), ..., p(x — %, 0)) =
vector of correlation between prediction points
and observed points.

— y(x;) = y;, interpolating property.

Georgia 28
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Krigingas Interpolator
and Predictor

15} 95% Confidence Interval | |
1L ]
05 1
ol ]

/: ----- New Kriging Predictor

,' ® Data
-0.5 /i True Function 1
%K- New Data
=== Old Kriging Predictor

1 ; f r r :
0 0.2 04 0.6 0.8 1

Georgia
Tech



Statistical Surrogate Modeling of
Computer Experiments

prediction, optimization

surrogate model
(Kriging <
| S

| ~

~

~

: more FEAruns  ~<
~
>
computer modeling physical experiment
(finite-element simulation) or observations

Georgia 30
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More onKriging

 Matheron (1963) named “kriging” after the mining engineer
D. G. Krige (1950). Earlier work by Wiener and Kolmogorov.
Widely used in spatial statistics. Use of kriging for computer
expts came from Sacks, Welch, Ylvisacker, etc. in the 80’s.

* Main differences from spatial statistics:

— Interpolation is a desirable property in deterministic
simulation.

— Design of experiments is a more acute issue.
— Emphasis on variable selection and response optimization.
* Problem with kriging: the n X n matrix R (n=# of x;) is prone
to ill-conditioning for large n.

Georgia 31
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Interplay Between Design and Modeling

A Computer simulations withifferent levels of
accuracy (Kennedy Q1| | 3 yQanetat.,n n T
2006;QianWu, 2008) m=)

construction ofnestedspacefilling (e.g., Latin
hypercube) designg)ianAr-Wu, 2009, various
papers byQianand others, 200%late).

A GPmodelwith quantitative andjualitative
factors QianWu-Wu, 2008, Han et al., 200839

construction ofslicedspacefilling (e.g., Latin
hypercube) design€)anWu, 2009 Qian 2010.

Georgia



Numerical Approach

A Can providdasterand morestablecomputation, and fit
non-stationary surface with proper choice of basis
functions.

A Some havénferential capability RadialBasis
Interpolating Functions (closely related tkriging),
smoothingsplines(Bayesian interpretation).

A Others donot: MARS, Neural networks, regressioased
Inverse distance weighting interpolatorgrest, but no
distribution), sparse representation froovercomplete
dictionary of functions. Need to imposestchastic structure
to do UncertaintyQuantification. One approach discussed

next.
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Uncertainty Quantification

Prediction

o

uQ Surrogate model
(Kriging o

| N
| N\

| N

| N

i >
\ computer modeling Physical experiment
(finite-element simulation) or observations
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Response Surface
for BistableLaser Diodes

* The true surface over a pre-specified grid over pump rate S,
and modulation current m_:

* Response value (vertical) is the Lyapunov exponent in
dynamic system, positive Lyapunov exponents (PLEs) are in
red. Computations of PLEs are time-consuming.

Georgiall; 35
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Scientific Objectives
INn Laser Diode Problem

A EachPLE corresponds to@aoticlight output,
which can accommodate a secure optical
communication channel; findingore PLEs would
allowmore securecommunication channels.

A Obijectives: Search all possible PLE (red area) and
obtain predicted values for PLEs.

A A numerical approach callgédBSMnext slide) can
do this.Question how to attacherror limitsto the
predicted values?

Georgia 36
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OvercompleteBasisurrogate Model

A Use armovercompletedictionary of basis
functions,no unknownparameters in basis
functions.

A Use linear combinations of basis functions to
approximate unknown functionsnear
coefficientsare the only unknown parameters.

A UseMatching Pursuito identify nonzero
coefficients; for fast and greedy computations.

Al K2A0S 2F ol ara FdzyOu A
the surface. Can handf®nstationarity
Chen, Wang, and Wu (2010)

Georgia



Imposing a Stochastic Structure

Original numerical model:

f(x) = X1 cigp;(x), for large M.
Impose a Bayesian prior on the coefficients c¢;, i.e.,
¢j~N(0,0°),j =1, M, smce#of{cj # 0} « M i.e.,
effect sparsity ©, we need a collapsing scheme in
variable selection.

Bayesian variable selection: choose an appropriate prior
for ¢; to represent effect sparsity, e.g., Stochastic Search
Variable Selection (George and McCulloch 1993).

Use MCMC to compute posteriors for {c;} and to select

significant coefficients. MCMC outputs can be used for
prediction inference, etc.

Georgia 38
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Simulation Results

Comparison between MP and SSVS
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