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Summary. R. A. Fisher's early work on linear models relied heavily on his knowledge of 
n-dimensional geometry. To illustrate this, we present an elementary, complete, modern day 
account of Fisher's geometric approach for the simple case of a paired samples t-test for a 
sample size of 3. A natural consequence of this approach is a surprisingly simple and explicit 
expression for the p-value. 
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1. Introduction 

R. A. Fisher's early work on linear models relied heavily on his knowledge of n-dimensional 
geometry (Box (1978), pages 122-129). Unfortunately his geometric approach was not under- 
stood by most of his colleagues, partly because of his tendency to 'let too much be clear or 
obvious', to quote the words of his colleague Gosset, better known to statisticians as 'Student' 
(Box (1978), page 122). Because of this difficulty, Fisher derived an algebraic approach which 
was more universally accepted (Fisher (1925) and Box (1978), page 129). In this paper we provide 
an elementary, complete, modern day account of Fisher's geometric approach for the simple 
case of a paired samples t-test for a sample size of n = 3. Surprising insights into the theory of 
linear models can be gained by working through this simple example. 

2. Paired samples t-test for n = 3 

For a paired samples data set we use the heights of males M and females F in three mixed sex 
twin pairs of adult humans, from Saville and Wood (1996). In the first twin pair, John's height 
was 185 cm whereas Janet's height was 166 cm (the data are real, but all names are falsified). 
In the second twin pair, Alistair's height was 185.4 cm whereas Joanna's was 177.8 cm. In the 
third twin pair, Bill's height was 182.9 cm whereas Mary's was 160 cm. The three differences in 
height (M - F) are 19.0, 7.6 and 22.9 cm. We treat these three differences as a sample of size 
n = 3 drawn independently from a single normally distributed population N(A, a2), consisting 
of differences in height between the male and female in mixed sex twin pairs of adult humans. 
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2.1. Geometric route 
For an analysis of the above data using the geometric route, we immediately ask 'How do we 
derive the chance of obtaining a sample "as extreme as, or more extreme than" the above sample 
(19.0, 7.6, 22.9) under the two-sided test hypothesis Ho: p = 0?'. The key, discovered by Fisher, 
is to think of the data as a vector in three-dimensional space, the vector (19.0, 7.6, 22.9)T. This 
leads naturally to a measure of 'extremeness'. 

To understand how such data vectors behave in 3-space, consider Fig. 1 where in each picture 
we display the data vectors resulting from many repetitions of a study. Firstly, if p, = 0 each 
sample comes from an uncorrelated trivariate normal distribution. The spherical symmetry of 
this distribution ensures that all directions in 3-space are equally likely (Fig. 1(a)). Secondly, if 
pu % 0 the tips of the data vectors are distributed around the tip of the vector (/, /,, ,/)T, so the 
directions of the data vectors are closer to the direction (1, 1, 1)T (Figs l(b) and l(c)). Lastly, 
the larger p is in relation to a, the smaller the angle between each data vector and the direction 
(1, 1, 1)T (Fig. l(c) versus l(b)). 

This suggests that we use the angle 0 between our particular data vector (19.0, 7.6, 22.9)T and 
the direction (1, 1, 1)T as a measure of how extreme our sample is under hypothesis Ho: /i = 0. 
If the angle is 'large' then our data are consistent with Ho: ,u = 0, whereas if the angle is 'small' 
then our data are consistent with the alternative hypothesis H1: ,L : 0. 

For our particular sample, we calculate 0 by using a standard formula from linear algebra 
which involves the dot product of two vectors: 

/19.0\ (1\ 
7.61. 1 

\22.9 1/ 19.0 + 7.6 + 22.9 = 0.93057 cos() = = 0.930 57. 
( (19.02 + 7.62 + 22.92) 3 = 2829.51 

Thus the angle is 0 = 21.476° (or 0.3748 radians), as shown in Fig. 2. 
Is this angle large or small? To answer this, we calculate the probability p of observing 

a data vector with angle 0 as small as, or smaller than, 21.476° under the null hypothesis 
Ho: , = 0. This is the probability of a data vector lying within the (infinite) double cone 
formed by rotating the data vector about the (1, 1, 1)T direction (Fig. 2). To evaluate p, we 
first calculate the probability under hypothesis Ho that a data vector of a fixed length, such as 
ro = /(19.02 + 7.62 + 22.92) = 30.711, the length of the data vector, lies in the double cone. 

Direction Direction Direction 

Third Third Third 
o vservation observation ri 

- " Second Second Second 
observation observation observation 

^^ 1 First First First 
observation observation observation 

(a) (b) (c) 

Fig. 1. Data vectors resulting from many repetitions of a study in the cases (a) -u=O, (b) t/0 and (c) 0UO 
with / larger than in (b): in general, the angle between a data vector and the (1,1, 1)T direction grows smaller 
as [t grows larger; this suggests the use of the angle as a test statistic for the hypothesis Ho: / = 0 
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Fig. 2. Data vector (19.0, 7.6, 22.9)T, associated sphere of radius ro = V(19.02 + 7.62 + 22.92) = 30.711 and 
double cone whose intersection with the sphere is shaded: the smaller the ratio of the surface area of the 
shaded intersection to that of the sphere, the stronger the evidence that , is non-zero 

From the spherical symmetry of the distribution of data vector directions under hypothesis Ho, 
this probability is 

surface area(shaded intersection in Fig. 2) 47rrr2{ 1 - cos(O)} 0 1 - cos(O) 
surface area(sphere of radius ro) 47rr 2 

where the surface areas were obtained by elementary calculus, and where the answer is indepen- 
dent of the ro-value that is used in the calculation. To complete the calculation of the p-value, 
we now integrate over all possible lengths of data vector r, weighting the above conditional 
probability by the probability that a data vector is of length r. This yields 

p= / {l-cos(O)}f(r)dr = {1 -cos(O)} / f(r)dr = 1-cos(O) = 1-cos(21.476) = 0.07 

where f(r) is the probability density function for the length of a data vector. 
To conclude our analysis, we note that the p-value of 0.07 is larger than 0.05, so our data 

are 'not unusual' under hypothesis Ho: ,u = O if we use a 0.05 cut-off point as our criterion. 
We conclude that we do not have strong evidence of a non-zero true mean difference in height 
between the male and female in mixed sex twin pairs. 

2.2. Link between geometric and traditional routes 
In the preceding subsection we completed the paired samples t-test of Ho: ,u = 0 without men- 
tioning the t-value. How does the geometric route to the p-value relate to the more traditional 
route? 

Now the familiar t-test statistic for paired samples is 

3 _ y-n _ yn 16.53 
395 

s/v/n s n = 
{ (yi - )2/(n-l)} / [{2.52 + (-8.9)2 + 6.42}/2] 
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where y ,..., Yn are the data values (differences between the paired sample values), y is the 
sample mean, s is the sample standard deviation and n is the sample size. 

To relate this to 0, we display in Fig. 3 a right-angled triangle which was implicit in Fig. 2. The 
triangle is obtained by projecting the data vector onto the (1, 1, 1)T direction and represents the 
vector sum 

(19.0\ (16.5\ / 2.5\ 
7.6 = 16.5 + -8.9 

\22.91 16.5/ 6.4/ 
with sides of length A = /(3 x 16.52) = 16.5V3 and B =V /{2.52 + (-8.9)2 + 6.42}= V126.42. 

Thus 
16.5,/3 A = 

/[{2.52 + (-8.9)2 + 6.42}/2] 
- 

B/ = /2cot(0) = V/2cot(21.476) = 3.595, 

establishing the relationship t = ,/2 cot(0) between t and 0 for the case of a sample of size 3. As 
an aside, note that the sample mean and standard deviation arise naturally within the triangle, 
with A = y5/3 and B = sV/2. 

2.3. Transformation from 0 to t 
In the above development, the angle 0 has been implicitly restricted to the range 0-90° for ease 
of explanation. This is entirely adequate for two-sided tests, but not for one-sided tests. More 
generally, 0 is defined to be the angle between the data vector and the positive sense of the 
direction (1, 1, 1)T, so 0° < 0 < 180°. 

If we also express 0 in radians (0 < 0 < 7r), we can write the probability density function for 
0 in its simpler form as sin(0)/2, since 

0 sin(u) 1 - cos(9) 
2 du 2 Jo 2 2 

In summary, the distribution of 0 (in radians) under hypothesis Ho: ,F = 0 (Fig. 4(a)) is 
converted via the transformation t = >/2 cot(0) (Fig. 4(b)) to the t2-distribution (Fig. 4(c)). 
Note that values of 0 close to 0 or rT are transformed to large positive and negative values of t 
respectively, whereas values of 0 close to 7r/2 are transformed to small values of t. 

2.4. Case Ho: i = to 
We note that the more general case Ho: ,t = Ito (A 0) can be rewritten in the current form as 
Ho: p - po = 0, with data analysis carried out using the transformed variable y - to. 

2.5\ 
(/19.0\ /) (-8.9 (length B = V126.42) 

\22.9/y 

0 = 21.476 /16.5 
I16.5 (length A = 16.5v3) 

16.5/ 

Fig. 3. Vector decomposition of the data vector: the familiar t-statistic is equal to V2 cot(O) 
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Fig. 4. Transformation t = /2 cot(O) (shown in (b)) which links the probability density function for 0 to that 
for t, shown in (a) and (c) respectively: the shaded areas indicate values that are more extreme than 0 or t 

3. Discussion 

In this paper we have conveyed the flavour of Fisher's geometric intuition and have related 
his 'angle' ideas to the more traditional ideas involving the t-distribution. These angle ideas 
extend to the paired samples t-test for a general sample size, and to any single degree of freedom 
hypothesis test in the general linear model. Examples of this extension to the paired samples 
t-test for a general sample size, the independent samples t-test, analysis-of-variance single degree 
of freedom contrast tests and the test of slope in a simple regression are given in appendix D 
of Saville and Wood (1996). In all these cases, the surprising result is that there is a direct 
computational formula for the p-value which does not rely on an approximation to a reference 
t-distribution. 

The approach outlined in this paper has been partly, but not wholly, described by other 
workers, i.e. the pieces of the 'jigsaw' are all present in the literature, but nowhere, to the 
knowledge of the authors, has the jigsaw been completed. In a book co-authored by Fisher's 
son-in-law, George Box, the p-value is given as the ratio of surface areas shown in Fig. 2, 
following a reference to the spherical symmetry of the distribution of data vector directions 
(Box et al. (1978), page 202). Box et al. (1978) pointed out that a small angle is associated with 
a large t-value and a small p, and described the t-value as a measure of the size of the angle 0. 
Together with Fisher's biographer and daughter, Joan Fisher Box (Box (1978), pages 126-127), 
Box et al. (1978) implied that the angle is the basic quantity, with the t-value being simply a 
means to an end. Heiberger (1989), pages 150-168, also discussed the relationship between 0 
and t for a range of linear model tests. Chance (1986) gave an explicit expression for the p-value 
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for the case of the correlation coefficient which involves a ratio of volumes. In Saville and Wood 
(1996), we elucidated the relationships between 0, t, F, the correlation coefficient r = cos(0) 
and the p-value for a range of linear model tests; the contribution of the current paper is to 
present concisely a complete analysis for a single example and to place the work in the proper 
historical context. 
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